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ABSTRACT 

The solution of the convective diffusion equation for the case of a flat channel with a transverse focusing force is proposed. It is shown 
that in practically important situations this solution can be expressed as a series containing Hermite polynomials. Using this solution, 
the transversal distributions of particles at different distances and corresponding to different distributions at the channel input were 
calculated. The situations in which there are uniform and delta-function-like transverse distributions of particles were examined. First. 
these curves show that transverse non-equilibrium peaks of concentration may exist if the distance from the channel input is short 
enough. Second, it is confirmed that there exists a possibility of high resolution under very non-equilibrium conditions. The transversal 
peaks of concentration may be used for the analysis of fractions that cannot be separated under equilibrium conditions. 

INTRODUCTION 

Recently, methods of continuous liquid mixture 
separation and analysis based on field flow fraction- 
ation (FFF) principles have been developed. A 
splitting of the flow in an FFF channel by means of 
longitudinal splitters was suggested [1,2] for the 
separation of different fractions in a field of trans- 
verse force. This method was called SPLITT (con- 
tinuous separation in split-flow thin cell) separation. 
The analytical variant of continuous FFF has been 
considered [3-51 in which photon-correlation spec- 
troscopy is used for the visualization of transverse 
particle distribution, i.e., integral Doppler anemom- 
etry (IDA). IDA analysis is easiest if a focusing 
transverse field is applied. The possibility of protein 
separation in a SPLITT cell with a transverse 
electrical field has been ‘demonstrated [6]. IDA 
spectra have been registered in a flat channel where a 
transverse focusing hydrodynamic force was acting 
[7,8]. A model suspension containing relatively large 
(cu. 1 pm) particles was used, and it was shown that 
the transverse particle distribution was essentially 
non-equilibrium. Because the particle size was rela- 
tively large, the trajectories of particles were used 
[7,8] for the calculation of IDA spectra, neglecting 

the Brownian motion. The possibilities of SPLITT 
separation in a non-equilibrium (transfer) regime 
have been discussed [6]. Most experimental situa- 
tions do not permit diffusion to be neglected, and the 
examination of the convective diffusion equation is 
necessary. 

THE MATHEMATICAL PROBLEM 

In a flat channel the dimensionless form of the 
convective diffusion equation is as follows: 

a/axr(a/~?x~ + aE/dxr)c = Pe(1 - x:)ac/az, (1) 

where x1 = x/h, z1 = z/h; x, z = transverse and 
longitudinal coordinates (x = 0 is placed in the 
plane of symmetry and z = 0 at the inlet of a 
channel), h = half-width of a channel, c = concen- 
tration, E(x) = transverse potential in kT units, 
kT = thermal energy and Pe = longitudinal Peclet 
number: 

Pe = u,h/D 

where u. = maximum flow velocity and D = 
diffusion coefficient of particles. If the transverse 
potential is of the focusing type, then 
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E(x,) = EfJ(x, - xcJ2 (2) 

where & = transverse Peclet number and x0 = 
dimensionless coordinate of a focusing point. The 
boundary conditions for eqn. 1 take into account the 
inpermeability of the walls and the constancy of 
concentration at the channel inlet: 

(a/ax, + dE/dxl)c = 0 atxi = -t_l (3) 

c = co at z1 = 0 (4) 

where co is the initial concentration. These boundary 
conditions permit a search for the solution of eqn. 1 
in the form 

c = cl(xl)e-‘z~ (5) 

and its transformation into an ordinary differential 
equation: 

d/dxi(d/dxi + dE/dxl)cl + Pei(l - x$cl = 0 (6) 

with the boundary conditions in eqn. 3 and eigen- 
value A. The substitution 

c1 = ~(xl)e-E(“~J/2 (7) 

transforms eqn. 6 into an equation of the Sturm- 
Liouville type: 

d%/dx: + [E. - E;(x, - x0)* + 

+ Pel(1 - x:)]u = 0 (8) 

with the boundary conditions 

du/dxi + Eo(xl - xo)u = 0 at x1 = +I (9) 

Different solutions of a Sturm-Liouville equation 
are orthogonal: 

s (1 - x:)u,u,dxr = a,,,, 
s 

(1 - x:)u,Zdxi (10) 

-1 -1 

where n, m = 0, 1, 2 . . . and 6,” = Kronecker 
symbol. 

Eqn. 9 permits the solution of eqn. 1 with 
potential as in eqn. 2 to be written in the following 
form: 

tl=CG 

c(xl,~J = c B,e-““~-E~(“~-x~)Z’2u,(~) 
n=o 

(11) 

1 1 

B, = 
s 

eE(x1)i2(l - x:),dx,/ (1 - x:)u,2dx1 
j 

(12) 

-1 -1 

After introducing a new coordinate: 

y = (Ei + Pell)“4[xl - xoE$(PeA + Ei$] 

we obtain the equation 

(13) 

dZu/dy2 + ([(& + Pei)(E& + PeA)i(Ez + 

+ Pe/z)]/(E$ + Pelb)1’2 - .v2)u = 0 (14) 

wherefo = I - x& and the boundary conditions 
are 

du/dy + Eo(Ei + Pe%)yu = 0 

at 

(15) 

y = (PeA + Ez)lj4[) 1 - E$xo(Eg + PeA)] (16) 

According to eqn. 16, the boundary conditions in 
eqn. 15 must be satisfied at y z EAi2 x=+ 1. In this 
situation we may assume that the boundary condi- 
tions in eqn. 15 are satisfied at y = _+ co. In addition 
to the conditions in eqn. 15, we must assume that 
c = 0 at the walls of channel, because for the 
focusing potential in eqn. 2 virtually all the particles 
are rejected from the walls at sufficiently short 
distances from the inlet. Usually E. c lo-100 in 
FFF, but it has been shown [7,8] that E. z 1000. 
After our simplification of the boundary conditions, 
only Hermite functions [9] can be the solutions of 
eqn. 14: 

u,(v) = e - y”2H,(y) 

where 

(17) 

H,,(y) = (- l)“e”‘d”(e -Y2)/dyn (18) 

is the Hermite polynomial. For the eigenvalues 3, we 
obtain the following equation: 

E. + Ped(Etio -I- Pel+)/(Ei + PeA) = 

(271 + l)(Ei + PeA)” (19) 

TRANSVERSE PARTICLE DISTRIBUTIONS AT Pei << E; 

The expression on the left-hand side of eqn. 19 
rises monotonically with /?, and for this reason only 
one 3, corresponds to any n. However, eqn. 19 has no 
analytical solution. Usually the channel length is ca. 
1 cmandh z 10-zcm,soz, z 102andil 6.~;’ % 
lo-‘. Under usual FFF conditions E. = lo--100 
and Pe z 103-104, so Pe% R (l--10-2)E& Ascan be 
shown [7,8], Pe 2 10’ and E. % 103, so Pei. z 
10e2Ei. In other words, in most situations we can 
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assume that Pel czz E& and obtain from eqns. 
17-19 

tl R = e-~~~x~-IU)2,z*~,~~IZ(X1 _ x0)] (20) 

Pef&Eo = 2n (21) 

Eqns. 20 and 21 hold true for n -=z< E&/2. Because 
H,,@) w (2~)” for y >> 1, any member of the series 
10 is cu. (Eo)“’ exp( -Eo) << 1 near the walls, and 
the solution in eqns. 20 and 21 should be considered 
to be true. The conditions of orthogonality of the 
polynomials 20 are simpler than eqn. 10: 

m 

s 
e -“‘H,(x)H,(x)dx = &,,,,n!(~)“~ 

--a, 

and for coefficients B, we obtain instead of eqn. 12 

00 r 
B. = co 

J 
H,[(E)“2(x, - x,,)]dxi/[2”n!(n)“2] (22) 

Using the recurrent relationships [9] 

d[fGtiW~ = 2nK - 101) 

and the asymptotic expression for H,,(v) at y >> 1, 
we obtain 

B, = co(Eo)‘“+ “‘“[(l - x0)“+’ - 

(- 1 - xg)n+ ‘]/[2(?#‘2(n + l)!] (23) 

Expressions 20,21 and 23 permit us to obtain the 
function c(xlr zl) for Eo, Pe >> 1 and n << Eafo/2: 

c(xl, zi) = co(EO/~)112([(E0)1~2e-2E~‘1~foP”]”[(1 - xo)“+l 

- (- 1 - xo)““]( - l)“d[ee-E~‘“~-“~“]/dxl}/(n + l)! 

(24) 

With the help of eqn. 24 we can explain most of the 
phenomena that take place in the process of redistri- 
bution of particles in a flat laminar flow and 
transverse focusing potential. 

RESULTS AND DISCUSSION 

In the non-equilibrium (transfer [6] regime, trans- 
verse peaks of concentration appear owing to the 
decrease in the transverse force and velocities of 
particles on approaching the focusing point. In this 
situation the particles, which are released from the 

walls, are concentrated in the regions where the 
transverse force is small. The positions of non- 
equilibrium peaks, as shown [7,8], can be different at 
the same distance z for particles with different values 
of Eo, even if they have the same focusing point. for 
example x0 = 0. In this case, 

c(xl,zl) = c~(E~/~)“~ 2 [,n,2”(e-E0x:)/dx:‘]/[(2n + 
n=O 

where a = Eoe-(4EozI/Pe). 

+ 1Wo)“l (25) 

Eqn. 25 gives the possibility of calculating ap- 
proximately the maximum distance at which the 
non-equilibrium peaks still exist. At large distances 
=1, where a -CK 1, eqn. 25 transforms into the 
Boltzmann exponent, which has the maximum at 
xi = 0. At smaller distances two members of the 
series 25 should be taken into account: 

C 
F 

0.4 

0.3 

Fig. 1. Transverse particle distributions with a uniform particle 

distribution at the channel input. E0 = 20; Pe = 2’ 103. (1) a = 
2.0; (2) a = 1.0; (3) a = 0.5; (4) Boltzmann distribution. 
a = Eoe-%Z!/Pe~ 
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C(XlrZl) = Glb%/~) 
We-E+ + 

+ (46) (4Eox: - 31 (26) 
This expression has a maximum. at x = 0 if a > 1, 
tht is, the non-equilibrium peak is possible at the 
distances 
21 <z; = PelnE,,/4Eo 

For Pe x lo6 and E. rz 103, we obtain z; =: 1727. 
If the half-width of a channel h z 10e2 cm, then the 
distance corresponding to this value is equal to ca. 
17.3 cm. Although the comparison is very condi- 
tional, these parameters are in accordance with 
specified conditions [7,8], where non-equilibrium 
peaks were observed. The transverse distributions of 
concentration t different values of a (i.e., at different 
distances from the channel input) are shown in Fig. 
1. These curves are obtained using first four mem- 
bers of series 25 with n = 0, 1, 2, 3. It can be shown 
that the maximum error is less that 5% even at a = 
2. The curves in Fig. 1 confirm the possibility of the 
existence of non-equilibrium transverse peaks of 
concentration at a > 1. A special inlet has been 
proposed [lo, 1 l] to make the initial transverse 
distribution of particles narrower and to increase the 
resolution of FFF. If the initial transverse distribu- 
tion of particles is much narrower that Eo- li2, we 
can write the initial concentration in eqn. 4 as 

c = 2c&x) at z1 = 0 (27) 

where 6 is the Dirac delta function. The distribution 
27 is normalized to obtain the same number of 
particles in any cross-section of the channel that 
gives eqn. 4. Using eqns. 22 and 21 we can find 
coefficients B,,: 

B,, = 2c0(E0/nJ “‘H2,(0)/[22”(2n!)] (28) 

Substituting the values of Hz,(O) obtained from the 
recurrence relationship 

H,,+I(x) = 2xH,(x) - 2nH,,_1(x) 

H2”(0) = (- 2)“(2n - l)!! (29) 

where (2n - I)!! is the product of all uneven num- 
bers <2n, we obtain 

B, = 2c0(E0/n) I”( - 2) - “/[2”(2n)!!] (30) 

where (2n)!! is the product of all even numbers from 
2 to 2n. Using eqn. 30, the transverse distribution of 
particles can be written as 

S. N. SEMENOV 

@I, 21) = 
(31) 

11 = * 

Transverse distributions corresponding to eqn. 31 
with different values of h = (e-4EozliPe)/2 (i.e., at 
different distances from the channel input) are 
shown in Fig. 2. A characteristic feature of these 
curves is the increase in their width with increasing 
distance from the channel input. Only at large 
distances, when h -CC 1, does the transverse distri- 
bution reach the maximum width Eg1!2 and a 
Boltzmann transverse distribution is established. 
This is in good agreement with the suggestion [ 10,l I] 
that a “pinched” inlet must be used to increase the 
resolution of FFF 
rium regime when 
tion is narrow. 

or SPLTTT in the non-equilib- 
the transverse particle distribu- 

C 

c 

0.2.- 

+ 
-3 -2 -1 0 1 2 ;\r .$( 21 3 

Fig. 2. Transverse particle distributions with a delta-function- 
like particle distribution at the channel input. E. = 20; Pe = 
2' 10". (1) h = 2.0: (2) h = 1.0; (3) h = 0.5; (4) Roltzmann 
distribution. h = (l,E)r-4Lnz1 Pe. 
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